
The Offline and Online Method Implementation with
RSA Algorithm in Software Product Key Generator

Muhammad Daru Darmakusuma - 135180571

Program Studi Teknik Informatika
Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
13518057@std.stei.itb.ac.id1

Abstract—Product key or software key is a specific
software-based key for a computer program to certifies that the
copy of the program is original. Product keys contain a series of
number and/or letters that will be entered by the user during the
installation of computer software. The sequence is passed to a
verification function in the program. The verification function
will match the sequence depending to the mathematical
algorithm implemented. The algorithm that can be implemented
is RSA. RSA algorithm is a asymmetric cryptography algorithm.
The implementation can be done through offline or online
process.

Keywords—product key, RSA algorithm, cryptography, software

I. INTRODUCTION

Product key or software key is a usually unique,
alphanumeric code of any length required to install a software
especially for paid software that implemented by many
software developer. They help software developers ensure
every copy of their software was legally purchased. Most
software, like operating systems and other programs, require
product keys as a general rule these days.

A product key is like a password for a program or
software. This password is given upon buying the software
and can only be used within the specific application that had
been purchased. Product key usually can only be used once
per user or sometime strictly per installation. Without a
product key, the program will most likely run as a trial of the
full version. Open source and free software programs barely
require a product key except the developer implements it for
statistical purpose.

Product keys usually only can be used once in installation
of the program but some product key servers allow for the
same key to be used by any number of people as long as they
are not used simultaneously. In the implementation there’s a
limited slot of product keys, so if the software using the key is
not used and shut down, another can be used and opened at the
same slot.

Product key often produced and generated by a computer
program called a key generator (key-gen). Key generator
generates a product licensing key to activate a software
application. Keygens can be distributed legally by software
manufacturers for licensing software in commercial

environments to bulk licensing software in a enterprise.
Keygen also can be distributed illegally for software piracy.

Cryptography is an element that being used to make a key
generator and verification function for product key. The
cryptography algorithm and the methods to process it can be
the factors of preventing illegal distribution of key generator.
The algorithm that usually used at a key generator is RSA
algorithm with two type of process, offline and online.

II. THEORY

A. Cryptography
Cryptography is an important tool for information security.

Cryptography is a subject that learn mathematical technic that
related to information security like secrecy, data integrity, and
authentication [1].

In cryptography, there are multiple terminologies, as
follows:

● Message, readable information and can be receipted
as visual or audio.

● Sender, someone who sends the message.
● Receiver, someone who receive the message.
● Ciphertext, message that have been encrypted so it

cannot be interpreted.
● Encryption, process of encrypting message to

ciphertext.
● Decryption, process of decrypting ciphertext to

plaintext or original message
● Cipher, algorithm that being used to encrypt and

decrypt the message.
● Key, the parameter that being used to encrypt and

decrypt the message.
● Eavesdropper, someone or something that trying to

catch the message while being transmitted.
● Cryptanalysis, knowledge and art of cracking

ciphertext to plaintext without knowing the key.
● Cryptology, study on cryptography and cryptanalysis.

B. Asymmetric Cryptography
Asymmetric cryptography is created in 1976 to fix the

disadvantage of symmetric cryptography that use the same key

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

for encryption and decryption [2]. The sender and the receiver
have two different key to encrypt and decrypt the message.
The two keys are private and public key. The public key is
used to encrypt the message and the private key is used to
decrypt the message.

The flow of message transmission in this cryptography is
the sender have the public key to encrypt the message and then
the receiver can decrypt it with their own private key [2]. The
term public in the key is that the key is known to public for the
use on encrypting the message. On the other hand, the private
key is being kept secret to decrypt the message.

For comparison, the symmetric and the asymmetric
cryptography advantages and disadvantages, as follows:

Symmetric
Cryptography

Asymmetric
Cryptography

Advanta
ges

● Encryption and
decryption
process doesn’t
take much time

● Size of the key
relatively short

● Authentication of
the message is
known from the
ciphertext

● Only private
key that must be
kept secret
when
communicating

● Tuples of public
key and private
key don’t need
to be changed
for a long
period

● Can be used for
digital signing

Disadva
ntages

● Key and the
message must be
transmitted in a
different line to
keep secrecy

● Key should be
changed every
session

● Encryption and
decryption
process take a
long time to be
done

● Ciphertext size
usually more
bigger than
plaintext

● Key size
relatively bigger

C. RSA Algorithm
RSA algorithm is one of popular asymmetric cryptography

and have many application of it. The security of RSA
algorithm is located at the difficulty in factorization of integers
to prime number. The properties of RSA algorithm consist of
variables as follows:

● p and q prime numbers (private)
● n = p q (public)
● (n) = (p – 1)(q – 1) (private)
● e (encryption key) (public)

○ Terms: GCD(e, Φ(n)) = 1 , GCD = greatest
common divisor

● d (decryption key) (private)
○ d counted from d e-1 mod (Φ(n))

● m (plaintext) (private)
● c (ciphertext) (public)

The flow of the encryption and decryption process can be
done as follows:

Generating a public key:

1. Select two prime no's. Suppose P = 53 and Q = 59.
2. Now First part of the Public key : n = P*Q = 3127.
3. We also need a small exponent say e, but e must be an

integer, not be a factor of n.
1 < e < Φ(n) [Φ(n) is discussed below],
Let us now consider it to be equal to 3.

4. Our Public Key is made of n and e

Generating a private key:

1. We need to calculate Φ(n) :
Such that Φ(n) = (P-1)(Q-1)
so, Φ(n) = 3016

2. Now calculate Private Key, d :
d = (k*Φ(n) + 1) / e for some integer k
For k = 2, value of d is 2011.

Encrypting and decrypting process:

1. Convert letters to numbers : H = 8 and I = 9
2. Thus Encrypted Data c = 89e mod n.

Thus our Encrypted Data comes out to be 1394
3. Now we will decrypt 1394 :

Decrypted Data = cd mod n.
Thus our Encrypted Data comes out to be 89
8 = H and I = 9 i.e. "HI".

D. Software Activation
Software activation is a process of activating or verifying

if the software that being installed or used is legally
purchased. Software activation usually need a product key that
need to be inserted. Software activation mainly have two
methods of verification and usage of product key. The two
methods of activation as follows:

1. Offline Activation

Offline activation is a software activation process
without needing a connection to the internet. The
verification process in this method usually done by
the installer or the software function alone by
decrypting the product key to the correct plaintext
with different private key for each user. This method
is prone to be attacked by a cracker that created a key
generator with the same cipher.

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

2. Online Activation

Online activation is a software activation process that
need a connection to the internet. The verification
process in this method usually done similar as offline
activation but the key difference is the plaintext is
served for different user, so it the cracker can’t
produce a key generator that randomly generate a
key. Product key sometimes is unnecessary for
modern activation because most of it now use the
user account to activate the product.

III. EXPERIMENT

For the experiment, the process that will be analyzed are
the offline and online method of software activation with RSA
algorithm. The output and parameter that will be analyzed are
the security of the key authenticity. In the offline method will
only use one plaintext as the verifier of the product and for the
online method will use a text file that pretends as a database of
plaintext slot of each users.

A. Implementation
The implementation of the key generator were developed

in Python 3.7 with RSA algorithm. The program developed is
helped by an utility file to calculate the key generated by the
RSA algorithm. The source codes for the implementation as
follows:

Utility file:

from random import getrandbits, randrange

def gcd(a, b):
while b > 0:

a, b = b, a % b
return a

def lcm(a, b):
return a * b // gcd(a, b)

def is_prime(n, k=128):
if n == 2 or n == 3:

return True
if n <= 1 or n % 2 == 0:

return False

s = 0
r = n - 1
while r & 1 == 0:

s += 1
r //= 2

for _ in range(k):
a = randrange(2, n - 1)
x = pow(a, r, n)
if x != 1 and x != n - 1:

j = 1
while j < s and x != n - 1:

x = pow(x, 2, n)

if x == 1:
return False

j += 1
if x != n - 1:

return False
return True

def genPrime(length=1024):
while True:

p = getrandbits(length)
p |= (1 << length - 1) | 1
if is_prime(p, 128):

return p

def is_square(n):
if n < 0:

return False
prev = n
x = n // 2
while x * x != n:

x = (x + (n // x)) // 2
if x >= prev:

return False
prev = x

return True

def sqrtmod(a, p):
a = a % p
res = []
for x in range(2, p):

if (x * x) % p == a:
res.append(x)

return res

def multi_inverse(e, totient):
d = 0
x1 = 0
x2 = 1
y1 = 1
temp_totient = totient

while e > 0:
temp1 = temp_totient//e
temp2 = temp_totient - temp1 * e
temp_totient = e
e = temp2

x = x2 - temp1 * x1
y = d - temp1 * y1

x2 = x1
x1 = x
d = y1
y1 = y

if temp_totient == 1:
return d + totient

def genE(totient):
while (True):

e = randrange(2, totient)
if (gcd(e, totient) == 1):

return e

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

def genPrimeRange(start, end):
while (True):

res = randrange(start, end)
if (is_prime(res)):

return res

def str_to_int(m):
_m = ""
for c in m:

i_c = str(ord(c))
i_c = "0" * (3 - len(i_c)) + i_c
_m += i_c

return int(_m)

def int_to_str(m):
_m = str(m)
_m = "0" * ((3 - (len(_m) % 3)) if len(_m)

% 3 > 0 else 0) + _m
x = ""
for i in range(0, len(_m), 3):

c = chr(int(_m[i:i+3]))
x += c

return x

def bin_to_int(m):
_m = ""
for b in m:

i_b = str(int(b))
i_b = "0" * (3 - len(i_b)) + i_b
_m += i_b

return int(_m)

def int_to_bin(m):
_m = str(m)
_m = "0" * ((3 - (len(_m) % 3)) if len(_m)

% 3 > 0 else 0) + _m
x = bytes()
for i in range(0, len(_m), 3):

b = int(_m[i:i+3])
b = b.to_bytes(1, 'big')
x += b

return x

RSA cipher tool:
import utils

class RSA:
def genKey():

p = 0
q = 0
while (p == q):

p = utils.genPrimeRange(100, 500)
q = utils.genPrimeRange(100, 500)

n = p * q
totient = (p - 1) * (q - 1)
e = utils.genE(totient)
d = utils.multi_inverse(e, totient)

return e, d, n

def encrypt(plaintext, e, n,
block_length=2):

encrypted_blocks = []
block = ord(plaintext[0])
for i in range(1, len(plaintext)):

if (i % (block_length) == 0):
encrypted_blocks.append(block)
block = 0

block = block * pow(10,
block_length+1) + ord(plaintext[i])

encrypted_blocks.append(block)
for i in range(len(encrypted_blocks)):

encrypted_blocks[i] =
str(pow(encrypted_blocks[i], e, n))

ciphertext = " ".join(encrypted_blocks)

return ciphertext

def decrypt(ciphertext, d, n,
block_length=2):

blocks = ciphertext.split(' ')
_blocks = []
for b in blocks:

_blocks.append(int(b))
plaintext = ""
for i in range(len(_blocks)):

_blocks[i] = pow(_blocks[i], d, n)
temp = ""
for j in range(block_length):

temp = chr(_blocks[i] % pow(10,
block_length+1)) + temp

_blocks[i] //= pow(10,
block_length+1)

plaintext += temp

return plaintext

Offline keygen:

from RSA import RSA

e, d, n = RSA.genKey()
f = open('RSAoff.pri', 'wt')
f.write(str(d) + "," + str(n))
f.close()
f = open('RSAoff.pub', 'wt')
f.write(str(e) + "," + str(n))
f.close()
f = open('offline.txt', 'rt')
m = f.read()
c = RSA.encrypt(m, e, n)
print("Product key: {}".format(c))

Offline verifier:

from RSA import RSA

print('=====RSA=====')
f = open('offline.txt', 'rt')

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

m = f.read()
f.close()
c = input("Insert Product Key: ")
f = open("RSAoff.pri", "rt")
key_string = f.read().split(",")
f.close()
n = int(key_string[0])
d = int(key_string[1])
p = RSA.decrypt(c, d, n)
print(p)
print("Correct product key: {}".format(c))
print("Product activated: {}".format(p == m))

Online keygen:

from RSA import RSA
import random

e, d, n = RSA.genKey()
f = open('RSAon.pri', 'wt')
f.write(str(d) + "," + str(n))
f.close()
f = open('RSAon.pub', 'wt')
f.write(str(e) + "," + str(n))
f.close()
f = open('online.txt', 'rt')
marr = f.read().splitlines()
m = random.choice(marr).split(",")[0]
c = RSA.encrypt(m, e, n)
print("Product key: {}".format(c))

Online verifier:

from RSA import RSA

print('=====RSA=====')
f = open('online.txt', 'rt')
marr = f.read().splitlines()
c = input("Insert Product Key: ")
f = open("RSAoff.pri", "rt")
key_string = f.read().split(",")
f.close()
n = int(key_string[0])
d = int(key_string[1])
p = RSA.decrypt(c, d, n)
print("Correct product key: {}".format(c))
act = False
if str(p) + ',n' in marr:

act = True
marr.remove(str(p) + ',n')
marr.append(str(p) + ',y')

print("Product activated: {}".format(act))
f = open('online.txt', 'wt')
for key in marr:

f.write(key + "\n")
f.close()

B. Case Studies
1) Offline Activation

To test which is the most secure for the distribution of
software license, we need to make the plaintext that will be the
verifier for the product key. For the offline method was used a
single plaintext file to verify the product keys as follows:

For the output of the keygen and verifier with offline
method shown as belows:

And if we insert the same product key, it still will be accepted,
as follows:

2) Online Activation

For the online method was used a list of plaintext with
label if the key was used or not in a text file to verify the
product keys as follows:

For the output of the keygen and verifier with online
method shown as belows:

And if we insert the same product key, it will be rejected,
as follows:

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

C. Analysis
From the experiment we can analyze that both of the

method can be utilized to generate a key and verify it. But for
the distribution of the keygen, there are major difference to
consider the security and the integrity of the key that being
used. The safest method to generate and verify the software is
by online method

IV. CONCLUSION

Online activation for product key generator and verifier is
the safest implementation for software distribution. The online
method cannot use the same key repeatedly and safe for wide
distribution for the keygen. The crackers will have a difficult
time to develop a keygen that can match the plaintext.

ACKNOWLEDGMENT

First, the author would like to be thankful to God. The
author like to express his gratitude and appreciate Mr. Rinaldi
Munir for his teachings and lectures in Cryptography. The
author also thankful for his family and friends.

REFERENCES

[1] Munir, Rinaldi. 2019. Slide Kuliah Pengatar Kriptografi IF4020
Kriptografi. Bandung: Institut Teknologi Bandung

[2] Munir, Rinaldi. 2019. Slide Kuliah Kriptografi Kunci-Publik IF4020
Kriptografi. Bandung: Institut Teknologi Bandung

[3] Munir, Rinaldi. 2019. Slide Kuliah Algoritma RSA IF4020 Kriptografi.
Bandung: Institut Teknologi Bandung

[4] https://www.geeksforgeeks.org/rsa-algorithm-cryptography/, visited at
19 December 2021, 17.00 WIB

[5] https://keygen.sh/blog/how-to-generate-license-keys-in-2021/, visited at
19 December 2021, 20.00 WIB

PERNYATAAN
Dengan ini saya menyatakan bahwa makalah yang saya tulis
ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan
dari makalah orang lain, dan bukan plagiasi.

Bandung, 20 Desember 2021

Muhammad Daru Darmakusuma, 13518057

Makalah IF4020 Kriptografi, Semester I Tahun 2021/2022

